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The theory of ternary mixtures of mesomorphic semi-rigid polymers is reviewed. Polymer chains are 
modelled as elastic lines (with bend curvature) and a density functional method is used to construct a 
general expression for free energy of mixing which includes terms representing the entropy of mixing, the 
entropy of chain configuration and the mean field through pairwise interaction potentials. Expressions for 
the chemical potentials are derived and numerical methods used to compute phase diagrams for a specific 
mixture, the mesomorphic semi-rigid polymerl/solvent2/solvent3 system. 
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INTRODUCTION 

Over the last 20 years, many studies, both theoretical 
and experimental, have been made of polymers. The 
studies had two main interests: blends a-3 and meso- 
morphic liquid crystal polymers 4-6. One of their aims 
was to design polymers with specific properties for 
industrial applications. 

Liquid crystal polymers exhibit different kinds of 
mesomorphic phase (nematic, cholesteric and smectic 
phases) ~. We are interested here with those giving 
nematic phases only. To study these polymers, we need 
to model polymer chains. Several models have been used 
previously: rods to model rigid chains s, rods connected 
by flexible spacers, wormlike chains 9 to model semi-rigid 
polymers, etc. For this study on phase diagrams of 
semi-rigid liquid crystal polymers, we chose the elastic 
line model. 

Theoretical studies began as early as the 1940s on rigid 
rod polymers. Onsager ~° developed a virial equation 
explaining the occurrence of phase separation between 
an isotropic and an anisotropic phase in a system of rigid 
rods in a solvent. Flory and Huggins independently used 
the lattice model to study polymer chains and their 
studies gave rise to the well known Flory-Huggins 
thermodynamic equations 11'12. Using such equations, 
Flory has shown that a phase transition can occur in 
systems consisting of rigid rods or semi-flexible chains s 
in a solvent. Flory and co-workers 13-19 applied this 
theory to multicomponent systems, to chains with some 
flexibility and to systems with a mass distribution 
(polydisperse). In this approach, at first only a repulsive 
interaction between particles was used. Attractive terms 
were introduced more recently. 

Authors such as Khoklov, Semenov and Odijk 2°'21 
have used the Onsager theory to study lyotropic systems 
with different mechanisms of flexibility. This is related to 
the fact that real polymer chains are in general semi-rigid 
rather than rigid. 

Recently, a density functional method was used to 
study thermodynamic properties of a space curve in 
which only positional degrees of freedom were taken into 
a c c o u n t  22. 
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In the present authors' laboratory, the functional 
method has been used to study the same thermodynamic 
properties as earlier, but orientational interactions were 
also taken into account. This resulted in a general 
expression for the free energy of mixing, which was used 
to study lyotropic liquid crystal polymers 23-26, mixtures 
of a liquid crystal polymer and a non-mesomorphic 
polymer and mixtures of two liquid crystal polymers 26. 

In this paper, we extend these studies to ternary 
mixtures. The model used is summarized and the free 
energy of mixing is calculated for a general three- 
component mixture. The chemical potentials and equa- 
tions which must be resolved numerically to obtain phase 
diagrams are derived. An example is given of a phase 
diagram for a specific ternary system (polymer-solvent- 
solvent). 

CHAIN MODEL 

We describe a semi-rigid polymer as an elastic curve with 
bend elastic constant tc and length L. We define the 
position and orientation at contour length 0, s and L 
from the origin of the chain by (r', w), (r, w) and (r", w"), 
respectively, with w = dr/ds and [w] = 1. The associated 
elastic energy of a chain is 2s 

K - -  d s  
2 Jo \ O s /  

Saito et al. 2v used such a model to calculate some 
configurational properties (such as (R 2) and (R4)) and 
obtained for the quadratic mean square end to end 
distance (R 2) the expression 

( R  2 )  - 2(fl~c)L{1 - (fl~)/L[1 - -exp(-L/ f l tc )]}  (1) 

which is the same as the wormlike chain expression 9 with 
persistence length q = flK ( f l - l =  kBT, where k B is the 
Boltzmann constant). 

FREE ENERGY OF MIXING 

All the developments below are a generalization to 
ternary mixtures of calculations given previously for 
binary mixtures z3-26. 
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A general expression for the partition function of a 
ternary semi-rigid polymer mixture is 

ZK 3r~(s)PK[rK(S)] exp{ -- flVErK(S)]l 
Z =  ~/ j=l  

(2) 

The first term on the right-hand side gives the kinetic 
energy contribution to the partition function, where K 
denotes the polymer species. Integration is over all space 
curves rK(s). The products are over all monomers (j) and 
polymer species (K). For a given component K, 

" LKds(~)2rK(S)~2~ 
= e x p  - = ~  L  ..fo , 

represents the configurational probability for an indi- 
vidual particle, N K is the number of monomers and 
NK = NK/LK is the number of chains, where LK is the 
degree of polymerization (DP). 

The interaction between different chains, V{rK(S) }, is 
given by 

1 / [  a . a  

V[rK(S)] = ~ ds ds'Vaa,[ra(S) -- ra,(S')] 

fo fo ! ~ ds ds'Vbb,[rb(S ) - -  rb,(S')] 
+ 2 b .  b, 

1 f[  ~ ds ds'V¢¢,[rc(S ) -- r~,(s')] 
+ 2 . ,  

+ ~ ds ds' V a b [ ¥ a ( S )  - -  rb(S')] 
a,b 

+ ~ ds ds'Vac[ra(S) - -  rc(s')] 
a,c 

+ y, ds ds'Vbc[rb(s ) -- rc(S')] (3) 
b,c 

which is the sum of interactions between chains of the 
same nature (intrapolymer interaction) and interactions 
between chains of different species (interpolymer inter- 
action). These interactions are position and orientation 
dependent. We consider only two-body interactions. 
VKK, is the density of the interaction between K and K'. 

After Hong and Noolandi 22 we introduce the micro- 
scopic density of particles at point r with orientation w: 

flK fO~K ~K(r, W) = ~ ds 6{r -- r(s)} 6{w -- w(s)} (4) 
K=I~ 

with w(s) = ~r(s)/?~s the orientation of the space curve at 
point s, ]w(s)l = 1. We rewrite the exponential in equation 
(2) as follows: 

exp{--fiVErK(S)]} = f ~ pK [1K 
X a(p K -- /)K(I', W)) exp{--flW[rK(s)]} (5) 

W{rKtS)) = 21~, f drdr'dwdw' 

X pK(r, W)WKK,(r, wr', W')pK(r', W') (6) 

Using the integral representation of the Dirac function, 

we have 22 

xexp{fdrdwUK(r,w)[pK--~K(r,w)]} (7) 

where ~ is the normalizing factor. Then 

e-~V=~:flKIK (~PK(~UK 

Using these equations, we rewrite the partition function 
of equation (2) as 

z= /I1 K ! a,K UKI-IQ  
\ K ~K!/ K 

xexpI~KfdrdwUK(r,W)pK(r,w)Iexp(--fiW ) (9) 

where 

QK=f&bWPK(r,w) exp[--ff~dSUK(r,w,] (10) 

represents the configuration of a given component, with 

PK(r'w)=exp[ - ~  ~o d s ( ~ s )  10{w-w(s)] 

for a semi-rigid polymer chain. OK and UK are here 
independent variables representing, respectively, the 
particle density and the mean field. 

The partition function can then be given by the 
expression 

g~__:~ .I" K~ aDK I~U K exp(--fi .W[pK, UK}) ( l l )  

with ~{PK, UK} representing the functional of the free 
energy. Using the Stirling formula and neglecting the 
kinetic energy contribution terms, we obtain 

fi,~-{pK, UK}=~K NK(lnNK--1)--~K NL~In(QK) 
LK LK 

~K f drdw pK(r, W)UK(r, W)+ fiW (12) 

Minimizing this functional with respect to PK and UK 
leads to 

5W 
UK(r , W) = fl 6/>K 

(13) 
NK ~QK 

pK(r, W)= -- 
LKQK aUK 

We obtain, using equation (13), the following expression 
for the density and mean field at equilibrium: 

PK(r, W)= NK i "K -- - - -  dsdrdw PK(r, w) 
LKQK Jo 

Ef?ds., q ,14a, 
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(.  
uK(r, w)= E {d r '  dw' WK,K,(r,r', w, w')pK,(r', w') (14b) 

K' ' J 

which are coupled equations. By inserting equation (14) 
into equation (13) we obtain the expression for the free 
energy. The free energy of mixing is given by 

,SAo~ = fl[~{PK, UK}--~ NK f f  {p°, u°} ] n o 

with ,8~{pO, u o} the free energy for pure materials. 
From now on, we are interested only in homogeneous 

systems. To compute the free energy of mixing, we need 
to make some hypotheses: 

(1) The two-particle interaction can be expanded in 
spherical harmonics (as was done by Nakagawa and 
Akahane28): 

WK,K,(r, r', w, w') = ~, C(l1112mmlm2) 
1,11,12 

ra,m l ,m2 

' \ ~ [ ]  V~l(w)Y~ ~(w') 

x WK.w(lr - r'l, 111l 2) (15) 

where Yt,m(W') are spherical harmonics and 
C(llll2mmlm2) are Clebsh-Gordon coefficients. 

(2) The density distribution depends on the orientation 
alone, so that pK(r, w)= nKfK(w), where n K is the 
number density of component K and fK(w) is the 
orientational distribution function. 

(3) The partial volume is the same for all species, 
vK = v = V/NK, and there is no volume change on 
mixing. 

We introduce the volume concentration of each 
component as q~K = NK/N°, with 52¢K = 1. With these 
assumptions, we have for the mean field potential 
(equation (14b)) the expression 

uK(w) = ,8 ~ {~bk,[VKK,(0) + VKK,(2)SK,P2(w)]} (16) 
K' 

We use summation over even 1 only (symmetry of the 
nematic) and choose to limit the expansion to 1 = 0, 2 to 
take a Maier-Saupe type potential. 

The interaction parameters of each component are 
represented by 

VKK'(I)= lv f r2 drWKK'(r' OII)(21+ I~I/2\~) 

(assuming the integrability of WKK,(r, Oil) and the order 
parameters by 

SK, = f dw'P2(w')fK,(W') 

The free energy of mixing per site for a ternary mixture 
becomes 

O1 02 ,SAF = ,8 A ~  v -- - -  In O1 + - -  In • 2 + 03 In • 3 
V L 1 L :  L 3 

O ,  l n j l  ~ l n  O3 
L1 - f 2  -- L3 In f 3  

1 032u33(2)S 2 - 21 ¢ ~ u , ~ ( 2 ) s ~  - ¢~ue~(2)s~  - 

- -  0 1 0 2 u 1 2 ( 2 ) $ 1 S  2 - -  0 1 0 3 u 1 3 ( 2 ) $ 1 S  3 

- -  0 2 0 3 u z 3 ( 2 ) S 2 S  3 .~- 0102~12 

"]- (I)1(I)3~13 "~- O203~23 (17) 

where ZKK' = UKW(0)--½[UKK(0) + UWW(0)] are the steric 
interaction parameters, as in Flory-Huggins theory, 
UKK, = fl v ~ ,  

JK = .j'dw dw' ~K(W, w', LK) 

is the orientational partition function and 

f { 2 pK(w,w',LK)= 6 w e x p - f l  ds \ & J  

+~¢K,VKK,(2)SK,P2(I)I } K ,  (18) 

gK(W, W', LK) represents the probability of finding a chain 
with orientations w(s = 0) and w'(s = LK) and solves the 
equations z9 

1 1 K 2,8~ Aw + u(K')P2(w) ~'K(W, W', LK) 

= f(LK)6(w-- w') (19) 

u(K') = ,8 Y, OK, VKK,(2)SK, 
K 

where K, K'  = 1, 2, 3. Note that the case UKK,(2 ) = 0 and 
JK = Cte corresponds to the well known Flory-Huggins 
model for a ternary mixture 12. 

If t~3 = O, then 

(1 --  ~ )  
,SAF = ~ In @ + - -  ln(1 - O) - In J1  

L1 L1 L2 

(1 - o ) ] n  J 2  - 1 02u11(2)s,:  
L2 

1 
--  -- (1 -- 0)2U22(2)$22 -- 0(1 - d i ) )R12(2)S IS  2 

2 

"-]- O(1 -- O)Z12 (20) 

which is the general expression for the free energy of 
mixing in the binary case 26 and which can be compared 
with that proposed by Brochard et al. 3°. 

PHASE DIAGRAMS 

The phase diagrams are obtained through the calculation 
of the chemical potentials of the different polymers in the 
different phases. Instead of the chemical potentials, we 
will use the following quantities: 

~AF 3AF 
110 = fl ~ 1 1  ~0  = fl ~ ) 2  r l  = f l A F  - -  ~)1[,.10 - -  4)2~02 

which are related to the chemical potential by 

/~I" = L l ( n  + # ° ) #~h = L : ( n  + # ° )  p~h = L3(FI) 

We take as independent variables ¢1 and ¢2 (¢3 = 
1 - ¢1 - ¢2) and obtain 

In J 3  In 051 + ( 1 1 In q~3 In J l  

P ° =  LT-~ \ L 1  £3 L3 E l  -~ L3 

q'- ~2(Z12 -- Z23) -{'- (~3 -- ~l)~13 (21) 
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p0 In 42 4-(  1 1 )  ln43 lnog 2 lnJ/3 

~-- L 2  L2 / '3 L3 L2 F L3 

4- 41(~12 -- X13) 4- (43 -- ~b2)Z23 (22) 

rl = !n  4 '3_1n @ _  4~! _ 4~2 + 1 - 43 
L 3 L 3 L :  L 2 L 3 

1 2 2  1 2 2 
- 2 ul 1(2)Sl41 -- 2 u22(2)S242 

1 
u33(2)8242 -- 4142t112(2)S182 

- 2  

-- 4143Ul 3(2)S1S3 -- ~243u23(2)$2S3 

+ (4: + 42)(q~z:3 + 42Z23)- 4:42Z12 (23) 

The equalities of these quantities in the different phases 
in equilibrium, together with the equilibrium value of the 
order parameter ((?AF/(?SK = 0), solve the problem and 
require numerical calculation. Thus we can obtain 
equations for the various types of biphasic equilibrium: 
isotropic-isotropic biphase 

, ° 0 )  = ,k°(I) nO)  = n ' ( i )  

where I = isotrope, K = 1,2; isotropic nematic biphase 

/~°(I) = #°(N) FI(I) = n(N)  

where N = nematic; nematic-nematic biphase 

/~°(N) = It~(N) FI(N) = H'(N) 

Similarly, we can look for the possible existence of 
triphasic zones. 

ILLUSTRATION OF THE THEORY 

We focus our attention on a semi-rigid mesomorphic 
polymer (length L1, persistence length q:) in a mixture 
of two solvents. Orientational correlation between the 
polymer and the solvents is not considered (1 = polymer; 
2, 3 = solvents). 

The expression for the free energy of mixing per site 
becomes 

flAF = L14~ In qS~ + L242 In ~b 2 + (/)3L3 In ~b 3 - L~I In cf~l 

1 2 
- 2 4~u, t(2)S~ + 0,42Z:2 

4- 4143Z13 4- 4243Z23 (24) 

To illustrate the phase diagrams, we start first with the 
simplest case where the two solvents have the same 
geometrical dimensions ( L  2 = L 3 = 1 ). We take L~ = 2.5, 
so the critical values of the isotropic interactions are 
Z~24 = Z~3c = 1.3 and Z23c ~- 2. We use, a s  u s u a l  26 

1 
Zijc ~ [L (  1/2 4- L]- 1/212 

The expressions for the/~o and H become in this case 

~o _ In ~b 1 In d'~l 1- 42(Z12 -- Z23) 
L1 Ll 

/ | 1 )  
-- In 43 4- (~b3 - 01)Z13 - 1--~ (25) 

#0 2 = In 42 - - I n  43 4- 41(Z12 - Z13) 4- (43 -- 42)Z23 (26) 

( 11) 1 42u,,(2)$2 n = l n 4 3 + 4 :  1 -  L - 2  

4- ((])1 4- 42)(41X13 4- 42Z23)--- 4142Xt2 (27) 

In the following, we are interested only in the calculation 
of biphasic areas. The equations for phase equilibrium 
are (indicating one phase by a prime, ') 

0 = 1 In 4'1 _ In 4 ;  _ I In ~ff-'l 
L: 41 4~3 L: # :  

4- (42 -- (])2)(Z12 -- X23) 

+ [ ( 4 ;  - 43)  - (4,'1 - 41) ]z13 (28) 

0 =In  ~b~_ln ~b; + (41 - 4 , ) ( Z , 2 -  Z:3) 
42 4,3 

4- E(4; -- (1~3) -- (42 -- 42)]Z23 (29) 

0 = in O~ 4- ( 4 , -  ~;b:)(1 - 1 )  
43 L 
1 

- u,,(2)[(s',24i 2 ) -  (s~o~)] - 4',4'~z,: 
2 

4- 4142X12 4- (~1 4- 42)((b'lZ13 4- q~2Z23) 

- (¢1 + 4 2 ) ( 4 , z 1 3  + 4 ;z23 )  (30) 

These are three coupled equations which must be 
calculated numerically to obtain phase diagrams. An- 
other equation giving the order parameter (OAF/gS = O) 
is required to achieve the resolution of the problem. 

Consider a trivial case where the two solvents are taken 
to have the same characteristics, so that Z23 = 0, and to 
have the same affinity with the polymer, so that Z12 ~- Z13' 
We will call it the symmetrical case. The equations of 
equilibrium become 

O = - l n - - - l n  - In -2(4 '1-41)Z13 (31) 
Ll q~l q~3 LI -'¢1 

0 = In 4~ - In q53 (32) 

0 = in 4i  + (4,1- 4 1 ) ( 1 -  1 )  

1 
- 2 u, 1 (2)[((b'2S'~ 2) - (4~S~)] 

4- (4'12 -- 42)X13 (33) 

As equation (32) implies that 

(41 + 43)/(4'2 + 43)=  4~/4s = (1 - 4'1)/(1 - 4 ,)  (34) 

we obtain two coupled equations which are the same as 
those corresponding to a binary mixture of a polymer 
(0~) in a solvent (4s = 1 - 4 : ) ;  here the solvent is a 
mixture of two solvents z6. 

This leads to the ternary phase diagrams shown in 
Figure 1. Three slices are shown at reduced temperatures 
T/T,=0.95, 0.85 and 0.80 (T, being the transition 
temperature of the pure polymer, which is assumed to 
be thermotropic). Monophasic areas (anisotropic (A) or 
isotropic (I)) and biphasic areas (anisotropic isotropic: 
A/I, isotropic isotropic: I/I) can be seen. 

A cut of these ternary phase diagrams at a given 
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I 

3 
a ~' k p 

3 

2 
C \p 

Figure 1 Phase diagrams for a ternary mixture: mesomorphic 
polymerl/solvent2/solvent3 (symmetrical case); L1/L 2 = L 1 / L  3 = 2.5, 
X~2=Zi3, Z23=0. The diagrams are given at three reduced 
temperatures (a) T/T, = 0.95; (b) 0.85; (c) 0.80. A, anisotropic phase; 
I, isotropic phase; A/I, anisotropic-isotropic biphase; 1/I, isotropic- 
isotropic biphase 

proportion of the two solvents leads to the binary-like 
phase diagram given in Figure 2b (reduced temperature 
as a function of polymer concentration). Every plane p 
(see Figure 1) will lead to the same phase diagram, which 
does not depend on the relative proportion of the two 
solvents. 

All these results are obvious. But now, consider what 
happens if the situation is dissymmetrized a little by 
taking solvent 3 to be a 'good' solvent for the polymer (we 
choose gz 3 = 0) and keeping all other conditions the same 
as above. The results are given in Figure 3. The ternary 
phase diagrams are not symmetrical, and the various 
biphasic areas have decreased on the part of the diagram 
where the proportion of solvent 3 is important (compare 
Figure lb and Figure 3b). This is what we may have 
expected from physical considerations. 

The order parameter S of the polymer in the aniso- 
tropic phases (monophasic or biphasic) is given in Figure 
4, where S is plotted against T/qST t. This graph is the 
same as that calculated for a thermotropic polymer with 
L/q---2.5. This is due to the fact that we have not 
considered any orientational correlation between the 
polymer and the solvent, so that the effect of the solvent 
is only to dilute the orientational interactions between 
the monomers. For  a given TIT  t and a concentration q5 
in the polymer of the anisotropic phase under considera- 
tion, Figure 4 gives the associated order parameter S. 
We can see that, for ~b = 1 and T = Tt, S = 0.3430, the 
predicted order parameter at the transition for a 
monodisperse thermotropic polymer with L/q=2.5  
(References 25 and 26). 

1.5 

1 

. 9 0 - -  

T / T t  

.80--~--~ . . . . . .  

/ 

J 
0 

0 

1 . 5  I 
.90 
.80--_': 

A/i 

¢ 

a 1 

T / T  t b 

I 

• ' / 1 \  - . .  _ .  _ _  

A/i 

q) 

0 b 1 

1 
, .95 

.85 

Figure 2 Phase diagrams for two binary mixtures: mesomorphic 
polymer l -solvent  2 or 3. Reduced temperature T I T  t is shown as a 
function of polymer concentration; L I / L  2 = L x / L  3 = 2.5. (a) Solvent 
3, ~(13 ~ 0 ;  (b) solvent 2, Z12 = 1 .2T t /T  

CONCLUSIONS 

We have presented a new theory for ternary mesomorphic 
polymer mixtures. Complete treatment of the problem is 
long and difficult and depends on many parameters 
(length, interaction, rigidity, etc.) and variables (concen- 
tration, temperature, etc.). An exhaustive study was 
beyond the scope of this paper so our work was limited to: 

(1) an extension to the ternary mixture of the avail- 
able theories on thermotropic and binary mixture 
developed previously in the present authors' labora- 
tory25,26; 

(2) the derivation of the equations of phase equilibria 
for a ternary mesomorphic polymer mixture; 

(3) the beginning of a numerical resolution of a particular 
case (semi-rigid polymer in mixed solvents). 

Starting from the 'symmetrical' case (a didactic one), 
we have shown that the introduction of preferential 
affinity of the polymer with one of the solvents dissym- 
metrizes the ternary phase diagram and reduces the 
various biphasic areas. 

1514 POLYMER, 1991, Volume 32, Number8 
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1 

a 

3 2 
- b 

Al i  

3 2 
¢ 

Figure 3 Phase diagram for ternary mixture: mesomorphic polymer 1/ 
solvent2/solvent3; L1/L 2 = L1/L 3 = 2.5 La/ql = 2.5, Z13 = Z23 = 0. 
(a) T / T  t = 0.90, Z~2 = 1.33; (b) T / T  t =0.85, gaz = 1.41; (c) T / T  t = 0.80. 
&, Calculated binodal points. - - - ,  Lines joining points which give 
concentrations of the phases at equilibrium 

.832.5 

S 

N 

. 3 4 3 0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  __~ 
. 2 5 6 5  ;~ 

o 
.1 . 1 1.1 

Figure 4 Order parameter for a polymer with L~/q~ =2.5 as a 
function of T/T,(9 

N o t e  tha t  t h r o u g h o u t  the p re sen t  s tudy  we h a v e  n o t  
been  in te res ted  in p r o b l e m s  of  s tab i l i ty  o f  the  free ene rgy  
or  d e m i x i n g ,  wh ich  t o g e t h e r  wi th  the  inf luence  of  the  
va r i ous  p a r a m e t e r s  and  po lyd i spe r s i ty ,  will  be s tud ied  
later .  In  fu ture  s tudies ,  we will  p a y  p a r t i c u l a r  a t t e n t i o n  
to the  poss ib le  ex is tence  of  t r iphas ic  zones .  W e  will  a lso  
c o n s i d e r  s o m e  typ ica l  e x a m p l e s  of  p a r t i c u l a r  in te res t  for 
c o m p a r i s o n  wi th  e x p e r i m e n t a l  results .  

T h e  p re sen t  t h e o r y  dea ls  wi th  n e m a t i c  m e s o m o r p h i c  
p o l y m e r s ,  whi le  e x p e r i m e n t a l  resul ts  3~ 35 are  of ten  
c o n c e r n e d  wi th  cho les te r i c  m e s o m o r p h i c  p o l y m e r s  (cellu- 
lose  de r iva t ives  for example ) .  I t  will  be necessa ry  to solve  
the  cho les t e r i c  p r o b l e m  to ach ieve  a c o m p l e t e  t r e a t m e n t  
for this k ind  of  in te res t ing  and  w i d e s p r e a d  m e s o p h a s e .  

A C K N O W L E D G E M E N T  

B a b a  A i n i n a  t h a n k s  the F r e n c h  G o v e r n m e n t  for f inancia l  
suppo r t .  
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